A TV flow based local scale estimate and its application to texture discrimination
نویسندگان
چکیده
This paper presents a local region based scale measure, which exploits properties of a certain type of nonlinear diffusion, the so-called total variation (TV) flow. During the signal evolution by means of TV flow, pixels change their value with a speed that is inversely proportional to the size of the region they belong to. From this evolution speed one can derive a local scale estimate based on regions instead of derivative filters. Main motivation for such a scale measure is its application to texture discrimination, in particular the construction of an alternative to Gabor filters. When the scale estimate is combined with the components of the structure tensor, which provides orientation information, it yields a texture feature space of only four dimensions. Like Gabor features, this sparse feature space discriminates textures by means of their orientation and scale, yet the representation of orientation and scale is less redundant. The quality of the feature space containing the new scale measure is evaluated in texture segmentation experiments by comparing results to those achieved with Gabor filters. It turns out that one can gain a total speedup of factor 2 without loosing any quality concerning the discrimination of textures.
منابع مشابه
A TV Flow Based Local Scale Measure for Texture Discrimination
We introduce a technique for measuring local scale, based on a special property of the so-called total variational (TV) flow. For TV flow, pixels change their value with a speed that is inversely proportional to the size of the region they belong to. Exploiting this property directly leads to a region based measure for scale that is well-suited for texture discrimination. Together with the imag...
متن کاملA Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP
In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...
متن کاملDesigning in the texture of historic villages with an infill architectural approach Case study: Designing of ecotourism and tourism accommodation in Sopurghan village in Urmia County
Infill architecture has always been considered as a practical approach to create new structures to provide usable spaces in historical textures, which in addition to meeting the needs of contemporary era and strengthening the intrinsic values of a place; the development of these centers also plays a key role. This approach, which originated from urban development trends, can also be used as a d...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملMultiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns
This paper presents a theoretically very simple yet efficient multiresolution approach to gray scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain local binary patterns termed ‘uniform’ are fundamental properties of local image texture, and their...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Visual Communication and Image Representation
دوره 17 شماره
صفحات -
تاریخ انتشار 2006